Weighted norm inequalities for the Opdam–Cherednik transform
نویسندگان
چکیده
In this paper, we study several weighted norm inequalities for the Opdam–Cherednik transform. We establish different versions of Heisenberg–Pauli–Weyl inequality particular, give an extension using weights with exponents and present a variation that incorporates [Formula: see text]-norms Also, prove version Hardy–Littlewood Finally, other variations such as Nash-type Clarkson-type
منابع مشابه
Weighted Norm Inequalities
Introduction In the rst part of the paper we study integral operators of the form (1) Kf(x) = v(x) x Z 0 k(x; y)u(y)f(y) dy; x > 0; where the real weight functions v(t) and u(t) are locally integrable and the kernel k(x; y) 0 satisses the following condition: there exists a constant D 1 such that Standard examples of a kernel k(x; y) 0 satisfying (2) are (i) k(x; y) = (x ? y) , 0 (ii) k(x; y) =...
متن کاملWeighted Norm Inequalities for Fractional Operators
We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels. Indiana Univ. Ma...
متن کاملWeighted norm inequalities for integral transforms
Weighted (L, L) inequalities are studied for a variety of integral transforms of Fourier type. In particular, weighted norm inequalities for the Fourier, Hankel, and Jacobi transforms are derived from Calderón type rearrangement estimates. The obtained results keep their novelty even in the simplest cases of the studied transforms, the cosine and sine Fourier transforms. Sharpness of the condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics
سال: 2022
ISSN: ['1793-6519', '0129-167X']
DOI: https://doi.org/10.1142/s0129167x22500665